Metode Simpleks
(Sumber : Siringoringo, 2005)

Pengantar

Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan pada teknik eleminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim satu per satu dengan cara perhitungan iteratif. Sehingga penentuan solusi optimal dengan simpleks dilakukan tahap demi tahap yang disebut dengan iterasi. Iterasi ke-i hanya tergantung dari iterasi sebelumnya (i-1).
Ada beberapa istilah yang sangat sering digunakan dalam metode simpleks, diantaranya :
1. Iterasi adalah tahapan perhitungan dimana nilai dalam perhitungan itu tergantung dari nilai tabel sebelumnya.
2. Variabel non basis adalah variabel yang nilainya diatur menjadi nol pada sembarang iterasi. Dalam terminologi umum, jumlah variabel non basis selalu sama dengan derajat bebas dalam sistem persamaan.
3. Variabel basis merupakan variabel yang nilainya bukan nol pada sembarang iterasi. Pada solusi awal, variabel basis merupakan variabel slack (jika fungsi kendala merupakan pertidaksamaan ≤ ) atau variabel buatan (jika fungsi kendala menggunakan pertidaksamaan ≥ atau =). Secara umum, jumlah variabel basis selalu sama dengan jumlah fungsi pembatas (tanpa fungsi non negatif).
4. Solusi atau nilai kanan merupakan nilai sumber daya pembatas yang masih tersedia. Pada solusi awal, nilai kanan atau solusi sama dengan jumlah sumber daya pembatas awal yang ada, karena aktivitas belum dilaksanakan.
5. Variabel slack adalah variabel yang ditambahkan ke model matematik kendala untuk mengkonversikan pertidaksamaan ≤ menjadi persamaan (=). Penambahan variabel ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel slack akan berfungsi sebagai variabel basis.
6. Variabel surplus adalah variabel yang dikurangkan dari model matematik kendala untuk mengkonversikan pertidaksamaan ≥ menjadi persamaan (=). Penambahan ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel surplus tidak dapat berfungsi sebagai variabel basis.
7. Variabel buatan adalah variabel yang ditambahkan ke model matematik kendala dengan bentuk ≥ atau = untuk difungsikan sebagai variabel basis awal. Penambahan variabel ini terjadi pada tahap inisialisasi. Variabel ini harus bernilai 0 pada solusi optimal, karena kenyataannya variabel ini tidak ada. Variabel hanya ada di atas kertas.
8. Kolom pivot (kolom kerja) adalah kolom yang memuat variabel masuk. Koefisien pada kolom ini akn menjadi pembagi nilai kanan untuk menentukan baris pivot (baris kerja).
9. Baris pivot (baris kerja) adalah salah satu baris dari antara variabel basis yang memuat variabel keluar.
10. Elemen pivot (elemen kerja) adalah elemen yang terletak pada perpotongan kolom dan baris pivot. Elemen pivot akan menjadi dasar perhitungan untuk tabel simpleks berikutnya.
11. Variabel masuk adalah variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. Variabel masuk dipilih satu dari antara variabel non basis pada setiap iterasi. Variabel ini pada iterasi berikutnya akan bernilai positif.
12. Variabel keluar adalah variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan oleh variabel masuk. Variabel keluar dipilih satu dari antara variabel basis pada setiap iiterasi. Variabel ini pada iterasi berikutnya akan bernilai nol.

BENTUK BAKU

Sebelum melakukan perhitungan iteratif untuk menentukan solusi optimal, pertama sekali bentuk umum pemrograman linier dirubah ke dalam bentuk baku terlebih dahulu. Bentuk baku dalam metode simpleks tidak hanya mengubah persamaan kendala ke dalam bentuk sama dengan, tetapi setiap fungsi kendala harus diwakili oleh satu variabel basis awal. Variabel basis awal menunjukkan status sumber daya pada kondisi sebelum ada aktivitas yang dilakukan. Dengan kata lain, variabel keputusan semuanya masih bernilai nol. Dengan demikian, meskipun fungsi kendala pada bentuk umum pemrograman linier sudah dalam bentuk persamaan, fungsi kendala tersebut masih harus tetap berubah.

Ada beberapa hal yang harus diperhatikan dalam membuat bentuk baku, yaitu :
1. Fungsi kendala dengan pertidaksamaan ≤ dalam bentuk umum, dirubah menjadi persamaan (=) dengan menambahkan satu variabel slack. (S1, S2,.....Sn)
2. Fungsi kendala dengan pertidaksamaan ≥ dalam bentuk umum, dirubah menjadi persamaan (=) dengan mengurangkan satu variabel surplus.(-S1+A1)
3. Fungsi kendala dengan persamaan dalam benttuk umum,ditambahkan satu artificial variabel (variabel buatan). Pada akhir iterasi (solusi terakhir), variabel ini tidak diperkenankan nol. (A1, A2, ....An).

Perhatikan kasus A berikut :

Fungsi tujuan : minimumkan z = 2 x1 + 5.5 x2
Kendala :
x1 + x2 = 90
0.001 x1 + 0.002 x2 ≤ 0.9
0.09 x1 + 0.6 x2 ≥ 27
0.02 x1 + 0.06 x2 ≤ 4.5
x1, x2 ≥ 0




Bentuk di atas adalah bentuk umum pemrograman liniernya. Kedalam bentuk baku, model matematik tersebut akan berubah menjadi :
Fungsi tujuan : minimumkan z = 2 x1 + 5.5 x2
Kendala :
x1 + x2 + s1 = 90
0.001 x1 + 0.002 x2 + s2 = 0.9
0.09 x1 + 0.6 x2 – s3 + s4 = 27
0.02 x1 + 0.06 x2 + s5 = 4.5
x1, x2 , s1, s2, s3, s4, s5 ≥ 0

Fungsi kendala pertama mendapatkan variable buatan (s1), karena bentuk umumnya sudah menggunakan bentuk persamaan. Fungsi kendala kedua dan keempat mendapatkan variabel slack (s2 dan s5) karena bentuk umumnya menggunakan pertidaksamaan ≤, sedangkan fungsi kendala ketiga mendapatkan variabel surplus (s3) dan variabel buatan (s4) karena bentuk umumnya menggunakan pertidaksamaan ≥.

Perhatikan pula kasus B berikut ini :
Maksimumkan z = 2x1 + 3x2
Kendala :
10 x1 + 5 x2 ≤ 600
6 x1 + 20 x2 ≤ 600
8 x1 + 15 x2 ≤ 600
x1, x2 ≥

Bentuk di atas juga merupakan bentuk umum. Perubahan ke dalam bentuk baku hanya membutuhkan variabel slack, karena semua fungsi kendala menggunakan bentuk pertidaksamaan ≤ dalam bentuk umumnya. Maka bentuk bakunya adalah sebagai berikut :
Maksimumkan z = 2x1 + 3x2 + 0s1 + 0s2 + 0s3
Kendala :
10 x1 + 5 x2 + s1 = 600
6 x1 + 20 x2 + s2 = 600
8 x1 + 15 x2 + s3 = 600
x1, x2 , s1 , s2 , s3 ≥ 0
s1 , s2 , s3 merupakan variable slack.

PEMBENTUKAN TABEL SIMPLEKS

Dalam perhitungan iterative, kita akan bekerja menggunakan tabel. Bentuk baku yang sudah diperoleh, harus dibuat ke dalam bentuk tabel.
Semua variabel yang bukan variabel basis mempunyai solusi (nilai kanan) sama dengan nol dan koefisien variabel basis pada baris tujuan harus sama dengan 0. Oleh karena itu kita harus membedakan pembentukan tabel awal berdasarkan variabel basis awal. Dalam sub bab ini kita hanya akan memperhatikan fungsikendala yang menggunakan variabel slack dalam bentuk bakunya, sedangkan yang menggunakan variabel buatan akan dibahas pada sub bab lainnya.

Gunakan kasus B di atas, maka tabel awal simpleksnya adalah :

VB X1 X2 S1 S2 S3 solusi
Z -2 -3 0 0 0 0
S1 10 5 1 0 0 600
S2 6 20 0 1 0 600
S3 8 15 0 0 1 600

LANGKAH-LANGKAH PENYELESAIAN

Langkah-langkah penyelesaian adalah sebagai berikut :

1. Periksa apakah tabel layak atau tidak. Kelayakan tabel simpleks dilihat dari solusi (nilai kanan). Jika solusi ada yang bernilai negatif, maka tabel tidak layak. Tabel yang tidak layak tidak dapat diteruskan untuk dioptimalkan.
2. Tentukan kolom kerja. Penentuan kolom kerja dilihat dari koefisien fungsi tujuan (nilai di sebelah kanan baris z) dan tergantung dari bentuk tujuan. Jika tujuan maksimisasi, maka kolom kerja adalah kolom dengan koefisien paling negatif. Jika tujuan minimisasi , maka kolom kerja adalah kolom dengan koefisien positif terbesar. Jika kolom kerja ditandai dan ditarik ke atas, maka kita akan mendapatkan variabel keluar. Jika nilai paling negatif (untuk tujuan maksimisasi) atau positif terbesar (untuk tujuan minimisasi) lebih dari satu, pilih salah satu secara sembarang.
3. Tentukan baris pivot. Baris pivot ditentukan setelah membagi nilai solusi dengan nilai kolom pivot yang bersesuaian (nilai yang terletak dalam satu baris). Dalam hal ini, nilai negatif dan 0 pada kolom pivot tidak diperhatikan, artinya tidak ikut menjadi pembagi. Baris pivot adalah baris dengan rasio pembagian terkecil. Jika baris pivot ditandai dan ditarik ke kiri, maka kita akan mendapatkan variabl keluar. Jika rasio pembagian terkecil lebih dari satu, pilih salah sau secara sembarang.
4. Tentukan elemen pivot. Elemen pivot merupakan nilai yang terletak pada perpotongan kolom dan baris pivot.
5. Bentuk tabel simpleks baru. Tabel simpleks baru dibentuk dengan pertama sekali menghitung nilai baris pivot baru. Baris pivot baru adalah baris pivot lama dibagi dengan elemen pivot. Baris baru lainnya merupakan pengurangan nilai kolom pivot baris yang bersangkutan dikali baris pivot baru dalam satu kolom terhadap baris lamanya yang terletak pada kolom tersebut.
6. Periksa apakah tabel sudah optimal. Keoptimalan tabel dilihat dari koefisien fungsi tujuan (nilai pada baris z) dan tergantung dari bentuk tujuan. Untuk tujuan maksimisasi, tabel sudah optimal jika semua nilai pada baris z sudah positif atau 0. Pada tujuan minimisasi, tabel sudah optimal jika semua nilai pada baris z sudah negatif atau 0. Jika belum, kembali ke langkah no. 2 , jika sudah optimal baca solusi optimalnya.


MEMBACA TABEL OPTIMAL

Membaca tabel optimal adalah bagian penting bagi pengambil keputusan. Ada beberapa hal yang bisa dibaca dari table optimal :
1. Solusi optimal variable keputusan
2. Status sumber daya
3. harga bayangan (dual/shadow prices).





Kasus berikut ini menggunakan metode simpleks :
A.











1. Model Matematika:
Max Z = 50 X1 + 40 X2
Kendala = 0.4 X1 + 0.5 X2 ≤ 326
0.5 X1 + 0.3 X2 ≤ 354
0.05 X1 + 0.1 X2 ≤ 62
X1, X2 ≥ 0
X1 = CB
X2 = PR
2. Bentuk baku
Max Z = 50 X1 + 40 X2 + 0S1 + 0S2 + 0S3
Kendala = 0.4 X1 + 0.5 X2 + S1 = 326
0.5 X1 + 0.3 X2 + S2 = 354
0.05 X1 + 0.1 X2 + S3 = 62
X1, X2, S1, S2, S3 ≥ 0


3. Tabel Simpleks


4. Penyelesaian
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : - 50 : - 40. Maka kolom kerja terdapat dalam kolom CB

- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
S1 = 326 : 0.4 = 815
S2 = 354 : 0.5 = 708
S3 = 60 : 0.05 = 1240
Baris pivot terdapat pada baris S2.




- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 0.5

- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:
Baris Z :
1 -50 -40 0 0 0 0
- 50 ( 0 1 0.6 0 2 0 708 ) -
1 0 -10 0 100 0 35400
Baris S1 :
0 0.4 0.5 1 0 0 326
0.4 ( 0 1 0.6 0 2 0 708 ) -
0 0 0.26 1 -0.8 0 42.8

Baris S3
0 0.05 0.1 0 0 1 62
0.05 ( 0 1 0.6 0 2 0 708 ) -
0 0 0.07 0 -0.1 1 26.6
Tabel hasil iterasi pertama:

Selanjutnya kita periksa apakah tabel sudah optimal atau belum. Karena nilai baris Z dibawah variabel PR masih negatif , maka tabel belum optimal. Kita lakukan iterasi ke 2.
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : 0 : - 10. Maka kolom kerja terdapat dalam kolom PR

- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
S1 = 42.8 : 0.26 = 156.9
CB = 708 : 0.6 = 1180
S3 = 26.6 : 0.07 = 380
Baris pivot terdapat pada baris S1.



- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 0.26


- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:


Baris Z :
1 0 -10 0 100 0 35400
- 10 ( 0 0 1 3.85 -3.08 0 164.62) -
1 0 0 38.5 -30.8 0 37046.2
Baris CB :
0 1 0.6 0 2 0 708
0.6 ( 0 0 1 3.85 -3.08 0 164.62) -
0 0.4 0 -2.31 3.85 0 609.23

Baris S3
0 0 0.07 0 -0.1 1 26.6
0.07 ( 0 0 1 3.85 -3.08 0 164.62) -
0 0 0 -0.27 0.12 1 15.08

Tabel Hasil Iterasi ke 2:

Tabel sudah optimal. Sehingga perhitungan iterasi di hentikan.
MEMBACA TABEL OPTIMAL
CB = 609.23, PR = 164.62 dan Z = 37046.2 artinya untuk mendapatkan keuntungan maksimum sebesar $ 37.046,2, maka perusahaan sebaiknya memproduksi Radio CityBand sebanyak 609,23 dan Radio Portable sebanyak 164,62.



Status sumber daya :
Sumber daya pertama dilihat dari keberadaan variable basis awal dari setiap fungsi kendala pada table optimal. Dalam kasus di atas, untuk fungsi kendala pertama periksa keberadaan S1 pada variable basis table optimal. Periksa keberadaan S2 pada variable basis table optimal untuk fungsi kendala kedua. Periksa keberadaan S3 pada variable basis table optimal untuk fungsi kendala ketiga.

S3 = 15,08. Sumber daya ini disebut berlebih (abundant)
S2 = S1 = 0. Kedua sumber daya ini disebut habis terpakai (scarce).
Harga bayangan :
Harga bayangan dilihat dari koefisien variable slack atau surplus pada baris fungsi tujuan.

Koefisien S1 pada baris fungsi tujuan table optimal = 38,5, dengan demikian harga bayangan sumber daya pertama adalah 38,5
Koefisien S2 pada baris fungsi tujuan table optimal = -30,8, dengan demikian harga bayangan sumber daya kedua adalah -30,8
Koefisien S3 pada baris fungsi tujuan table optimal = 0, dengan demikian harga bayangan sumber daya kedua adalah 0.

B. Dua produk menghasilkan menggunakan tiga mesin. Waktu masing-masing mesin yang digunakan untuk menghasilkan kedua produk dibatasi hanya 10 jam per hari. Waktu produksi dan keuntungan per unit masing-masing produk ditunjukkan tabel di bawah ini:
Produk Waktu produksi (menit) Keuntungan
Mesin 1 Mesin 2 Mesin 3
1 10 6 8 2
2 5 20 15 3

1. Model Matematika:
Max Z = 2x1 + 3x2
Kendala = 10 x1 + 5 x2 ≤ 600
6 x1 + 20 x2 ≤ 600
8 x1 + 15 x2 ≤ 600
x1, x2 ≥ 0
2. Bentuk baku
Max Z = 2 X1 + 3 X2 + 0S1 + 0S2 + 0S3
Kendala = 10 X1 + 5 X2 + S1 = 600
6 X1 + 20X2 + S2 = 600
8 X1 + 15X2 + S3 = 600
X1, X2, S1, S2, S3 ≥ 0


3. Tabel Simpleks


4. Penyelesaian
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : - 2 : - 3. Maka kolom kerja terdapat dalam kolom Prod. 2.

- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
S1 = 600 : 5 = 120
S2 = 600 : 20 = 30
S3 = 600 : 15 = 40
Baris pivot terdapat pada baris S2.


- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 20

- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:
Baris Z :
1 -2 -3 0 0 0 0
- 3 ( 0 6/20 1 0 1/20 0 30 ) -
1 -22/20 0 0 3/20 0 90
Baris S1:
0 10 5 1 0 0 600
5 ( 0 6/20 1 0 1/20 0 30 ) -
0 17/2 0 1 -5/20 0 450

Baris S3
0 8 15 0 0 1 600
15 ( 0 6/20 1 0 1/20 0 30 ) -
0 7/2 0 0 -15/20 1 150
Tabel hasil iterasi pertama:

Selanjutnya kita periksa apakah tabel sudah optimal atau belum. Karena nilai baris Z dibawah variabel Prod. 1 masih negatif , maka tabel belum optimal. Kita lakukan iterasi ke 2.
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : - 22/20 : 0. Maka kolom kerja terdapat dalam kolom Prod. 1.

- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
S1 = 450 : 17/2 = 900/17
Prod. 1 = 30 : 6/20 = 100
S3 = 450 : 7/2 = 900/7
Baris pivot terdapat pada baris S3.



- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 17/2


- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:
Baris Z :
1 -11/10 0 0 3/20 0 90
- 11/10 ( 0 1 0 4/17 -1/34 0 900/17) -
1 0 0 22/85 2/17 0 2520/17


Baris Prod. 1 :
0 3/10 1 0 1/20 0 30
3/10 ( 0 1 0 4/17 -1/34 0 900/17) -
0 0 1 -6/85 1/17 0 240/17

Baris S3
0 7/2 0 0 0 -15/20 450
7/2 ( 0 1 0 4/17 -1/34 0 900/17) -
0 0 0 -14/17 7/68 -15/20 4500/17

Tabel Hasil Iterasi ke 2:

Tabel sudah optimal. Sehingga perhitungan iterasi di hentikan.
MEMBACA TABEL OPTIMAL
Prod. 1 = 240/17, Prod. 2 = 900/17 dan Z = 2520/17 artinya untuk mendapatkan keuntungan maksimum sebesar 2520/17, maka perusahaan sebaiknya memproduksi Prod. 1 sebanyak 240/17 dan Prod. 2 sebanyak 900/17.
Status sumber daya :
Sumber daya pertama dilihat dari keberadaan variable basis awal dari setiap fungsi kendala pada table optimal. Dalam kasus di atas, untuk fungsi kendala pertama periksa keberadaan S1 pada variable basis table optimal. Periksa keberadaan S2 pada variable basis table optimal untuk fungsi kendala kedua. Periksa keberadaan S3 pada variable basis table optimal untuk fungsi kendala ketiga.

S3 = 4500/17. Sumber daya ini disebut berlebih (abundant)
S2 = S1 = 0. Kedua sumber daya ini disebut habis terpakai (scarce).
Harga bayangan :
Harga bayangan dilihat dari koefisien variable slack atau surplus pada baris fungsi tujuan.

Koefisien S1 pada baris fungsi tujuan table optimal = 22/85, dengan demikian harga bayangan sumber daya pertama adalah 22/85.
Koefisien S2 pada baris fungsi tujuan table optimal = 2/17, dengan demikian harga bayangan sumber daya kedua adalah 2/17
Koefisien S3 pada baris fungsi tujuan table optimal = 0, dengan demikian harga bayangan sumber daya kedua adalah 0.


C. Suatu oabrik perakitan radio menghasilkan dua tipe radio, yaitu HiFi-1 dan HiFi-2 pada fasilitas perakitan yang sama. Lini perakitan terdiri dari 3 stasiun kerja. Waktu perakitan masing-masing tipe pada masing-masing stasiun kerja adalah sebagai berikut:
Statsiun Kerja Waktu perakitan per unit (menit)
HiFi-1 HiFi-2
1 6 4
2 5 5
3 4 6
Waktu kerja masing-masing stasiun kerja adalah 8 jam perhari. Masing-masing stasiun kerja membutuhkan perawatan selama 10%, 14% dan 12% dari total waktu kerja (8jam) secara berturut-turut untuk stasiun kerja 1,2 dan 3.

1. Model Matematika:
Max Z = x1 + x2
Kendala = 6 x1 + 4 x2 ≤ 432
5 x1 + 5 x2 ≤ 412,8
4 x1 + 6 x2 ≤ 422,4
x1, x2 ≥ 0

2. Bentuk baku
Max Z = x1 + x2 + 0S1 + 0S2 + 0S3
Kendala = 6 x1 + 4 x2 + S1 = 432
5 x1 + 5 x2 + S2 = 412,8
4 x1 + 6 x2 +S3 = 422,4
x1, x2, 0S1, 0S2, 0S3 ≥ 0
3. Tabel Simpleks

4. Penyelesaian
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : - 1 : - 1 . Kita tentukan secara sembarang sehingga kolom kerja terdapat dalam kolom HiFi-1.
- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
S1 = 432 : 6 = 72
S2 = 412,8 : 5 = 82.56
S3 = 422,4 : 4 = 105,6
Baris pivot terdapat pada baris S1.



- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 6

- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:
Baris Z :
1 -1 -1 0 0 0 0
- 1 ( 0 1 2/3 1/6 0 0 72 ) -
1 0 -1/3 1/6 0 0 72
Baris S2 :
0 5 5 0 1 0 412,8
5 ( 0 1 2/3 1/6 0 0 72 ) -
0 0 5/3 -5/6 1 0 52,8

Baris S3
0 4 6 0 0 1 422,4
4 ( 0 1 2/3 1/6 0 0 72 ) -
0 0 10/3 -2/3 0 1 134,4
Tabel hasil iterasi pertama:

Selanjutnya kita periksa apakah tabel sudah optimal atau belum. Karena nilai baris Z dibawah variabel HiFi- 2 masih negatif , maka tabel belum optimal. Kita lakukan iterasi ke 2.
- Kolom kerja merupakan perbandingan nilai negatif terbesar dari koefisien tujuan yaitu : 0 : - 1/3. Maka kolom kerja terdapat dalam kolom HiFi-2.
- Baris pivot adalah hasil perbandingan terkecil dari perbandingan nilai solusi/ kendali dengan nilai pada kolom kerja.
HiFi-1 = 72 :2/3 = 108
S2 = 52,8 : 5/3 = 31,68
S3 = 134,4 : 10/3 = 40,32
Baris pivot terdapat pada baris S2.



- Rubah semua nilai pada baris pivot dengan cara membaginya dengan nilai perpotongan antara kolom kerja dengan baris pivot : 5/3


- Rubah semua nilai selain nilai pada baris pivot dengan cara:
Nilai baru = Nilai lama – (nilai kolom kerja * nilai baru baris pivot)
Perhitungan nilai barisnya:
Baris Z :
1 0 -1/3 1/6 0 0 72
- 1/3 ( 0 0 1 -1/2 3/5 0 31,68) -
1 0 0 0 1/5 0 61,44




Baris HiFi-1 :
0 1 2/3 1/6 0 0 72
2/3 ( 0 0 1 -1/2 3/5 0 31,68) -
0 1 0 1/2 2/5 0 21,12

Baris S3
0 0 10/3 -2/3 0 1 134,4
10/3 ( 0 0 1 -1/2 3/5 0 31,68) -
0 0 0 1 1 1 105,6

Tabel Hasil Iterasi ke 2:

Tabel sudah optimal. Sehingga perhitungan iterasi di hentikan.
MEMBACA TABEL OPTIMAL
HiFi-1 = 21,12, HiFi-2=31,68 dan Z = 61,44 artinya untuk mendapatkan keuntungan maksimum sebesar 61,44, maka perusahaan sebaiknya memproduksi HiFi-1 = 21,12 dan HiFi-2=31,68.
Status sumber daya :
Sumber daya pertama dilihat dari keberadaan variable basis awal dari setiap fungsi kendala pada table optimal. Dalam kasus di atas, untuk fungsi kendala pertama periksa keberadaan S1 pada variable basis table optimal. Periksa keberadaan S2 pada variable basis table optimal untuk fungsi kendala kedua. Periksa keberadaan S3 pada variable basis table optimal untuk fungsi kendala ketiga.

S3 = 105,6. Sumber daya ini disebut berlebih (abundant)
S2 = S1 = 0. Kedua sumber daya ini disebut habis terpakai (scarce).
Harga bayangan :
Harga bayangan dilihat dari koefisien variable slack atau surplus pada baris fungsi tujuan.
Koefisien S1 pada baris fungsi tujuan table optimal = 0, dengan demikian harga bayangan sumber daya pertama adalah 0.
Koefisien S2 pada baris fungsi tujuan table optimal = 1/5, dengan demikian harga bayangan sumber daya kedua adalah 1/5
Koefisien S3 pada baris fungsi tujuan table optimal = 0, dengan demikian harga bayangan sumber daya kedua adalah 0.
Sumber :

Siringoringo, Hotniar. Seri Teknik Riset Operasional. Pemrograman Linear. Penerbit Graha Ilmu. Yogyakarta. 2005.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar:

Posting Komentar